$$
\text { Outline of Proof of } \lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1
$$

When we study slopes of trig functions, the limit $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}$ often appears. My goal in this supplement is to give you a quick outline of the key elements of the proof that if θ is in radians, then this limit is equal to 1 . You do not need to be able to prove this fact on exams, so this supplement is for your own interest.

First, remember that π is the number that you get when you take the circumference of a circle and divide by the diameter. Thus,

$$
\text { circumference }=\pi(\text { diameter })=\pi(2 r)=2 \pi r .
$$

Let's make a little note of what this means:
If you go all the way around a circle $(\theta=2 \pi \mathrm{rad})$, then the distance you travel is $2 \pi r=\theta r$.
If you go half way around a circle $(\theta=\pi \mathrm{rad})$, then the distance you travel is $\pi r=\theta r$.
If you go $1 / 4$ of the way around a circle $\left(\theta=\frac{\pi}{2} \mathrm{rad}\right)$, then the distance you travel is $\frac{\pi}{2} r=\theta r$.
If we use radians, then Arc Length $=\theta r$. In fact, this is the main reason we use radians.

Now to the proof of the desired limit:
Let θ be an angle between 0 and $\pi / 2$. And consider the arc of the unit circle that goes with this angle:

Note three things:

1. Looking at the small right triangle inside the arc, we get: $\sin (\theta)=\frac{a}{1}$, so $a=\sin (\theta)$.
2. Since Arc Length $=r \theta$ and $r=1$, we get $b=\theta$ (only true in radians!!).
3. Looking at the large right triangle, we get: $\tan (\theta)=\frac{c}{1}$, so $c=\tan (\theta)$.

Key Observation: From the picture you can see: $a<b$ and $b<c$.
(For a more precise proof talk to me or see the appendix of the book).
Putting these facts together gives:

$$
a<b \Rightarrow \sin (\theta)<\theta \Rightarrow \frac{\sin (\theta)}{\theta}<1 \text { and } b<c \Rightarrow \theta<\tan (\theta) \Rightarrow \cos (\theta)<\frac{\sin (\theta)}{\theta}
$$

Therefore,

$$
\cos (\theta)<\frac{\sin (\theta)}{\theta}<1
$$

As $\theta \rightarrow 0$, both sides of these inequalities approach 1 , so by the squeeze theorem we have:

$$
\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1
$$

